The purpose of this document is to show how to use the weather model soarGFS at the soaringmeteo.ch website. SoarGFS is a synoptic scale weather model. It is specific to the forecasts of thermal soaring. It provides forecasts for 7 days.

SoarGFS

Jean Oberson – soaringmeteo.ch - © 2013.

SoarGFS draws its data from the famous American model GFS, (global forecast system), global and macroscale. Its horinzontal resolution is 0.5 degrees.

Soaringmeteo.ch: Météorologie pour pilote

Home - soarGFS 0.5°> - soarWRF résolution 2K init 06Z> - soarWRF résolution 2K init 18Z> - Docs perso>

Let us visit the main page of the website.

Bienvenue sur la page principale de Soaringmeteo.ch !

Auteur et responsable du site web : Jean Oberson, pilote et instructeur OFAC de parapente. Vous trouverez ici des

soaring thermique (parapentes, deltas et planeurs) sur les Alpes. Il y a aussi de nombreux documents originaux pour comprendre la météo du vol de soaring et l'utilisation du parapente. La notion de **couche convective**, appelée aussi couche limite atmosphérique diurne, "boundary layer" en anglais, abrégée CC en français et BL en anglais, habituellement non enseignée lors de la formation de pilote, est ici omniprésente.

Ce site Web a été optimisé pour les navigateurs Internet récents. Il ne fonctionne pas avec MS-Internet Explorer 7 et 8 (MS-Windows XP). Pour celles et ceux qui ont XP, installez les excellents navigateurs Google Chrome et Mozilla Firefox, c'est gratuit.

Pour fonctionner de façon optimale, l'écran devrait avoir une hauteur d'au moins environ 1000 pixels, la fenêtre de votre navigateur devrait être ouverte aux dimensions maximales et les barres d'outils du navigateur, situées en haut, devraient être les plus minces et les moins nombreuses possible ! Si nécessaire, débloquez les fenêtres popup et activez Javascript dans les menus "options" ou "préférences". NEWS :

RASP est mort, vive soa

Le créateur de RASP, le D utilisait le modèle WRF (V laissé les sources de son de ce très fameux WRF (p tourne sur des serveurs d facilement. Progressivem de prévisions par jour, pro

Actuellement je me conce WRF, résolution 2Km sur

Le 13 mai

prévisions soarGFS 0.5°, ressemblant, du point de ressemblent le plus aux j %) de ressemblance. Si p région, il seront affichés s d'ascendance et le gain de

Copyright 2012, Jean Oberson - Tous droits réservés. / Les prévisions RASP et les documents de ce site sont libres pour la consu ni leur modification (notamment des en-têtes) avant distribution ni leur appropriation intellectuelle. / Date de la première mise e me contacter : jo (a) soaringmeteo . ch. / Les visiteurs de ce site web utilisent les informations disponibles à leur risque et péril.

Prévisions GFS de la nuit, disponible vers 0 suivants, initialisation à 18Z la veille

You will now see 4 sketch maps of the Alps. Each of these four maps respectively represents each of the four cycles of forecasts. The most recent cycle is designated by a date and time written in red and bold. Always check the forecast date. **!!! In case of doubt do not hesitate to refresh the web page !!!**

At the top left are the available forecasts at about 2:00Z, that is to say, 3 a.m, winter time, or 4 a.m, summer time. The starting data were initialized at 18 Z at the day before. Forecasts are valid for the current day and for the next 6 days. To reminder Z means universal GMT, or UTC, that is to say, for simplicity, the time of Britain.

At the top right are the forecasts available at around 6:00Z, that is to say, 7 a.m in the morning, winter time, or 8 a.m., summer time. The starting data were initialized at midnight Z. Forecasts are valid for the current day and for the next 6 days.

At the bottom left are the forecasts available at around 12:00Z, that is to say, 1 p.m., winter time, or 2 p.m., summer time. The starting data were initialized at 6Z. Forecasts are valid for the next 7 days.

At the bottom right are forecasts available at around 18:00Z, that is to say, 7 p.m., winter time, or 8 p.m., summer time. The starting data were initialized at 12Z. The forecast is valid for the next 7 days.

Each of these four maps are used in the same way.

pour le jour courant puis les 6 jours suivants, initialisation à 00Z

Prévisions GFS de l'après-midi, disponible vers 10:35Z, pour les 7 jours suivants, initialisation à 06Z

Prévisions GFS du soir, disponible vers 16:35Z, pour les 7 jours suivants, initialisation à 12Z

On the top of the new page, there is a color scale. On the left, with increasingly dark blue, are the negative values of pressure difference. In the middle, in white, values are zero or nearly so. On the right, with yellow then red becoming darker, there are increasing positive values of pressure difference. By convention in soarGFS, blue negative values correspond to the north foehn, that is to say to a overpressure in the northern of the Alps, while red positive values correspond to the south foehn, that is to say, overpressure in the southern of the Alps.

					_																
Hor	izontal f	transal	pine m	ean sea	level p	pressur	e differ	ence ev	volution	during	7 days	, from (GFS 0.5	° weat	her mod	el :					
dMSLP (hPa)																					
<-10	- 7	North	Foehn	- 5		- 3		-1		+1		+3		<u>+ 5 Sol</u>	uth Foeh	n + 7		>+	10		
-		_																			
	U	nder	this	scale	e, the	ere a	re fo	ur ta	bles,	corr	espc	ondin	g to f	oura	areas	of p	ressi	ure d	iffere	nce.	
Forecast date		2013			2013	June		2013			2013	54115	Friday	07 Jun	e 2013		2013		Sunday	09 June	2013
Initialization date and time: 02.jun.2013 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+138h	+141h	+159h	+162h	+165h
Forecast time	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z
Horizontal MSLP difference hPa)	-5.3	-5.2	-5.9	-2.1	-1.5	-1.9	0.7	1.0	0.3	1.3	1.4	0.3	0.4	0.3	-0.3	0.7	0.8	0.6	1.9	1.2	2.0
Horizontal MSLP difference 1 on																					
				Betw	een N4	17-E8.5	(Zürich	area)	and N4	6-E9 (L	ugano	area)									
Forecast date	Mon	day 03 2013	June	Tues	day 04 2013	June	Wedn	esday 0 2013)5 June	Thurs	day 06	june	Friday	07 Jun	e 2013	Satu	rday 08 2013	June	Sunday	09 June	e 2013
Initialization date and time: 02.ju .2013 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+138h	+141h	+159h	+162h	+165h
Forecast time	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z
Horizontal MSLP difference (hPa	-6.3	-7.0	-7.7	-3.5	-2.5	-2.8	-0.3	0.2	0.1	-0.1	0.3	-0.3	-0.9	-0.5	-0.7	-0.3	0.2	0.2	1.3	0.2	0.6
Horizontal MSLP difference icon																					
				Betwee	n N48-	-E11.5 (Münch	en area) and N	45.5-E	11.5 (V	licenza i									
Foregoet data	Mon	day 03	June	Tues	day 04	June	Wedn	esday C)5 June	Thurs	sday 06	5 June	Enidou	07 1	o 2012	Satu	rday 08	June	Sunday	00.1	2017
		2013			2013			2013			2013		Friday	07 Jun	e 2013		2013		Sunday	09 June	2013
Initialization date and time: 02.jun.201 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+138h	+141h	+159h	+162h	+165h
Forecast time	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z
Horizontal MSLP difference (hPa)	-7.1	-8.0	-9.1	-4.2	-3.1	-2.9	-0.4	0.4	0.1	-0.4	-0.2	-0.5	-1.4	-0.9	-1.0	-0.8	-0.2	-0.3	1.6	2.1	1.6
Horizontal MSLP difference icon																					
			Be	etween	N44.5	-E5.5 (V	/aldrôm	ne area) and N	44.5-E7	7.5 (Cu	neo are	a)								
Forecast date	Mon	day 03	June	Tues	day 04	June	Wedn	esday O)5 June	Thurs	sday Of	i June	Friday	07 Jun	e 2013	Satu	rday 08	June	Sunday	09 Jun	- 2013
	1.154	2013	1.216	1 20h	2013	1.45h	. cab	2013	1 coh	. 075	2013	1.02h			74	. tork	2013		, 150h	L L COL	1 d CEL
Initialization date and time: 02.jun.2013 182	+15h	+180	+21n	+39h	+42n	+45n	+63h	+66n	+69n	+8/n	+90n	+93n	+111n	+114n	+11/n	+1350	+1380	+141n	+159n	+162n	+165h
	-0.3.	-0.4	0.5	0.2	. J. 6 I	- 15	0.9	0.6	-11:00	1.1.	1.1.1	10.5		0.1	• =0.5	CNT.		4-1-7	1.8	1.5	0
I ne upper first table, for e	exam	pie,	corre	espoi	nas t	to the	e pre	ssure	e aino	erend	ce de	etwee	en the	e reg	gion c	or ine	ucna	tei (v	veste	rn	ĥ
Swiss Plateau) and the re	egion	ofly	rea	(Piec	lmor	nt). In	gen	eral,	high	er th	e pre	essui	e dif	ferer	nce is	, in c	one d	irect	ion o	ſ	
another, more turbulent o	r dar	naero	ous tl	he fli	aht c	ondi	tions	are	It is	up to		ervon	e to d	decid	de, ac	corc	lina t	o his	flvin	a	
averience, what maying		.goit				tod			unt o								loff	abuit		2	

experience, what maximal values can be supported. But we must also take into account the winds aloft, obviously. The pressure difference is only one of the parameters we have to take into account.

Home> - Retour page pi	incipale GFS> - Aide	et mode	e d'emp	loi> - H	elp and	usage>	- Guida	a e uso>	>													
1	Hor	izontal	transal	pine me	ean sea	level p	oressure	e differe	ence ev	olution	during	7 days	, from (GFS 0.5	, weat	her mod	iei :					
dMSLP (hP																						
	<-10		North	In	the h	ead	er of	each	n of t	he 4	table	es, th	en th	nere i	s the	e date	e for	each	n day			
Forecast date		Mon	day 03 2013	June	Betwe	day 04 2013	June	Wedne	esday 0 2013) and N4)5 June	Thurs	day 06 2013	June	Friday	07 Jun	e 2013	Satu	rday 08 2013	June	Sunday	09 Jun	e 2013
Initialization date and im	e: 02.jun.2013 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h											'n
Forecast time		09Z	12Z	15Z	09Z	12Z	15Z	097	12Z	15Z	09Z	2Z	97	127	and	157 1	forec	ast r	period	ls fo	rming	15
Horizontal MSLP differe	nce (hPa)	-5.3	-5.2	-5.9	-2.1	-1.5	-1.9	0.7	100	0.3	1.3	4		no th	at a	ntoir			volue		1.2	2.0
Horizontal MSLP differ	nce icon												Jum	iis ui		Jilai		SLF	value	:5.		
					Botw	oon N4	7-58 5	(Zürich	areal	and N4	6-E9 (L)	udano :	area)									
		Mon	dav 03	June	Tues	dav 04	June	Wedne	esdav ()5 June	Thurs	dav 06	June				Satu	rdav 08	June			
Forecast date			2013			2013			2013			2013		Friday	07 Jun	e 2013		2013		Sunday	09 June	e 2013
Initialization date and tim	: 02.jun.2013 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+138h	+141h	+159h	+162h	+165h
Forecast time		09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z
Horizontal MSLP differe	nce (hPa)	-6.3	-7.0	-7.7	-3.5	-2.5	-2.8	-0.3	0.2	0.1	-0.1	0.3	-0.3	-0.9	-0.5	-0.7	-0.3	0.2	0.2	1.3	0.2	0.6
Horizontal MSLP differe	n e icon																					
					Betwee	n N48-	E11.5 (Münche	en area) and N	45.5-E1	1.5 (V	icenza									
		Mon	day 03	June	Tues	day 04	June	Wedne	esday ()5 June	Thurs	day 06	June				Satu	rday 08	June			
Forecast date			2013			2013			2013			2013		Friday	07 Jun	e 2013		2013		Sunday	09 June	e 2013
Initialization date and tim	e: 2.jun.2013 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+138h	+141h	+159h	+162h	+165h
Forecast time		09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z	09Z	12Z	15Z
Horizontal MSLP differe	nce (hPa)	-7.1	-8.0	-9.1	-4.2	-3.1	-2.9	-0.4	0.4	0.1	-0.4	-0.2	-0.5	-1.4	-0.9	-1.0	-0.8	-0.2	-0.3	1.6	2.1	1.6
Horizontal MSLP differe	nce con																					
				Be	tween	N44.5-	E5.5 (V	/aldrôm	e area) and N	44.5-E7	.5 (Cu	neo are	a)								
Farran at data		Mon	day 03	June	Tues	day 04	June	Wedne	esday ()5 June	Thurs	day 06	June	Faidau		- 2012	Satu	rday 08	June	Curden	00.1	- 2012
	n to the main	nade	of	oar		13	LAF	1625	2013	LEOP	1976	2013	1.025	-riday	- 11/h	e 2013	11254	2013	11415	JIEOF	UJ SOL	145h
For		paye	5 01 8	buard	JI J.	2n Z	+45h 15Z	+03h	+00h	+ 69h	+8/m	12Z	+95h 15Z	+111h 09Z	+114n 12Z	+11/h 15Z	+135h	+158h	15Z	+159h	+102n 12Z	+105h
Horizontal MSLP differe	nce (hPa)	-0.3	-0.4	0.5	0.2	0.6	-0.5	0.9	0.6	-0.3	1.1	1.0	0.5	0.8	0.1	-0.5	0.7	0.2	-0.3	1.8	1.5	1.0
Horizontal MSLP differe	nce icon																					

Prévisions GFS de la nuit, disponible vers 00:35Z, pour le jour courant puis les 6 jours suivants, initialisation à 18Z la veille

Let us return to the main page soarGFS.

Home> - soarGFS 0.5°> - soarWRF résolution 2K init 06Z> - soarWRF résolution 2K init 18Z> - Docs perso>

Prévisions GFS de la nuit, disponible vers 00:35Z, pour le jour courant puis les 6 jours suivants, initialisation à 18Z la veille

Prévisions GFS d

Vue globale du ThQ dMSLP 10 DE 11 DE 12 DE 13 DE 14 DE 15 DE 16 DE 6.0E 9.0E 7.0E 8.0E Let's click on one of the white dots, for 48.0N example on the longitude 7 and latitude 46.5 point landmark-named Gruyère-Riviera. 47.5N 47.0N 46.5N Gruvère-Riviera 46.0N 45.5N 45.0N 44.5N 44.0N 43.5N

Prévisions GFS de l'après-midi, disponible vers 10:35Z, pour les 7 jours suivants, initialisation à 06Z

~

16.0E

Prévi

GFS 0.5° forecast about 10-25 Km ar	ound N	46.5-E7	7. Lan	dmark	name: G	ruyère-	Riviera.	Mean n	nacrosc	ale grou	nd leve	l elevati	on: 101	5 m. H	ml file g	enerated	on 20	13-Jun-()3 at 00	:53:48Z	
Forecast time and soundings links	[09Z>]	12Z>	15Z>	• 09Z>	> <mark>12</mark> Z>	15Z>	09Z>	12Z>	[15Z>]	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>
Forecast date and similar days links	Mon	day 03 2013>	June	Tu	esday 04 2013>	4 June	Wedne	es ay 0 2113>	5 June	Thurs	day 06 2013>	5 June	Frid	ay 07 : 2013>	June	Saturd 2	lay 08 013>	June	Sund	lay 09 . 2013>	June
We come across a large t	able.	In thation	ne h of tl	eade	er	45h	+63h	- 66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h 94	1.38h 87	+141h	+159h	+162h	+165h
selected GFS grid point a	s gec	grap	hic	(1	136 8	T 2 10	164 8	151 4 个	162 6	1/56	148 5	ZZI 8	→ →	ZZ3 9 Z	7	7	196 14 7	7	59 IO
date and time of the autor	n gro natic	table	ele e ge	vatio nera	n, tion.	6 11 7	150 6	1: 4 10 1	220 6 7	117 6	155 7	204 6 7	102 2	248 4 	284 10	218 8 2	.4 14 7	222 18	207 6 7	253 6 	49 14
Wind dir. & speed at 700 hPa (° Kmh)	44 26	58 13	83 6	114 (5 162 10	194 10	166 7	1 3 10	259 8	106 7	163 7	262 7	51 4	288 2	292 8	201 7 2	4 14	231 16	263 3	13	60 15
Wind direction Icon at 700 hPa	Ľ	K	\leftarrow	~	7	7	7	7	ĸ	~	Ŷ	\rightarrow	4	\rightarrow	7	7	7	7	\rightarrow	\downarrow	K
Wind dir. & speed at 750 hPa (° Kmh)	The	on the	oro	aro t	hroo	vlich	norio	de	3 6	106 7	149 6	249 5	62 5	270 1	292 6	181 7 2	6 10	214 9	355 2	41 5	70 12
Wind direction Icon at 750 hPa		10 7	and	15 7	7 and	ualiy	peno	us	\rightarrow	~	1	\rightarrow	K	\rightarrow	Y	ſ	7	7	\downarrow	2	K
Wind dir. & speed at 800 hPa (° Kmh)	92,	122	anu	15 2		33 11	175 5	346 6	9 5	105 4	18 2	335 4	83 3	349 5	343 6	176 5	76 5	310 4	105 3	77 7	91 8
Wind direction Icon at 800 hPa	<	Ľ	Ľ		¥	*		Ý	\downarrow	~	V	\mathcal{P}	\leftarrow	\mathcal{P}	γ	\uparrow	\rightarrow	7	~	K	←
Wind dir. & speed at 850 hPa (° Kmh)	45 25	36 25	39 21	- 22.4/	0.14	17 14	225.4	227.11	227.0	47.4	244.6	226.0	2.5	240.0	227.0	215.2	10.0	335 8	144 6	85 9	88 4
Wind direction Icon at 850 hPa	Ľ	Ľ	Ľ	th	e dat	e of t	he 7	fored	cast o	day. ⊺	There	e is tl	neref	ore 2	21 pe	riods	М	7	~	←	\leftarrow
Wind dir. & speed at 900 hPa (° Kmh)	35 21	26 22	30	in all	l. The	time	s and	d dat	es ar	e in t	the f	orm o	of link	(. W	e'll se	e righ	ntz s	NA	NA	NA	NA
Wind direction Icon at 900 hPa	Ľ	¥	N	awa	y wha	at the	se lin	ks. T	he ti	mes	and	date	s are	indi	cator	s of	М	NA	NA	NA	NA
Wind dir. & speed at 10m AGL (° Kmh)	30 17	20 18	25	colu	mns o	conta	ining	prec	licted	d wea	ather	para	mete	ers a	S327 7		318 8	336 8	127 4	69 7	51 2
Wind direction Icon at 10m AGL	4	J													• • • • •						
						, sk		· 7		λ,	<u> </u>	1	N.				\sim	7	~	K	Ľ
Total cloud cover (%)	① 50	40) 3	1 🕐 1	6 🕐 10		.0 0	O 0	43	00	03	1 49	O 1	0 4	66	0.0	5	↓ ● 24	 ● 99	لا 95	 ✓ ✓ 78
Total cloud cover (%) Low level cloud cover (%)	● 50 ○ 1	• 40 • 1		1 🕐 1 0 🔿	6 🕐 10 0 📿 0		0 0	0 o 0 o	• 43	0 o 0 o	0 3 0 1	49			 €66 ○ 0 		5 0 0	V ⁰ 24 ¹	 ✓ ✓ 99 ✓ 1 	 ✓ 95 ○ 1 	 ✓ ✓ 78 ✓ 2
Total cloud cover (%) Low level cloud cover (%) Middle level cloud cover (%)	 50 1 8 	40 40 1 17		1 🕐 1 0 🔾 1 🔾	6 🕐 10 0 🔿			· 0 • 0 •	• 43 • 0 • 1	0 0 0 0 0 0	0 3 0 1 0 0				66 0 0		5 0 0	V 24 1 1 1	 ▶ 99 ▶ 1 ▶ 98 	 ✓ 95 1 90 	 78 2 77
Total cloud cover (%) Low level cloud cover (%) Middle level cloud cover (%) High level cloud cover (%)	 50 1 8 49 	40 40 1 17 39		1 () 1 0 () 1 () 2 () 1					 43 0 1 43 			 49 0 0 0 49 			66 66 0 0 66			 ✓ 24 ○ 1 ○ 1 ○ 24 	 ▶ 99 ▶ 1 ▶ 98 ▶ 99 	 ✓ ✓ 95 1 90 94 	 78 2 77 24
Total cloud cover (%) Low level cloud cover (%) Middle level cloud cover (%) High level cloud cover (%) Convective cloud cover (%)	 50 1 8 49 0 	 40 1 17 39 0 		1 0 1 0 0 1 0 2 0 1 0 0					 43 0 1 43 43 67 			 49 0 0 49 0 49 11 						24 24 1 24 24 24 24 0 0	 ▶ 99 ● 1 ● 98 ● 99 ● 99 ● 0 	 ✓ 95 1 90 94 0 	 78 2 77 24 0
Total cloud cover (%) Low level cloud cover (%) Middle level cloud cover (%) High level cloud cover (%) Convective cloud cover (%) Boundary layer cloud cover (%)	 50 1 8 49 0 1 	40 40 1 17 39 0 0 1		1 0 1 0 0 1 1 0 2 1 0 0 1 0 0 1 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0					 43 0 1 43 67 0 0 			 49 0 0 49 49 49 11 0 						24 24 1 24 24 24 0 0 1	 ✓ ✓	 ✓ ✓ 95 ✓ 90 94 ✓ 0 1 	 78 2 77 24 0 1
Total cloud cover (%) Low level cloud cover (%) Middle level cloud cover (%) High level cloud cover (%) Convective cloud cover (%) Boundary layer cloud cover (%) 3h accum. total precipitation (mm)	 50 1 8 49 0 0 1 	40 40 17 39 0 0 1 0		1 0 1 0 0 1 0 2 0 1 0 0 0 0 0					 43 0 1 43 67 0 0 			 49 0 0 49 49 11 0 0 						↓ ○ 24 ○ 1 ○ 24 ○ 1 ○ 24 ○ 1 ○ 0 ○ 1 ○ 0	 99 1 98 99 0 0 1 0 	 ✓ ✓ 95 1 90 94 0 0 1 0 1 0 	 ✓ ✓
Total cloud cover (%) Low level cloud cover (%) Middle level cloud cover (%) High level cloud cover (%) Convective cloud cover (%) Boundary layer cloud cover (%) 3h accum. total precipitation (mm) 3h accum. convective precipitation (mm)	 50 1 8 49 0 0 1 0 0 	 40 1 17 39 0 0 1 		1 () 1 0 () 1 () 2 () 1 0 () 0 () 0 () 0 () 0 ()				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0	 43 0 1 43 67 0 0 			 49 0 0 49 11 0 0 0 			 66 0 0 66 2 0 0 			 ▶ ≥4 1 1 24 0 0 1 	 ▶ 99 ▶ 1 ▶ 98 ▶ 99 ▶ 0 0 ▶ 1 	 ✓ ✓ 95 90 94 0 94 0 	 ✓ ✓

GFS 0.5° forecast about 10-25 Km ar	ound N	46.5-E	7. Land	mark na	nme: G	ruyère-	Riviera.	Mean r	macrosc	ale grou	nd leve	l elevati	on: 101	5 m. H	tml file g	generate	ed on 20	13-Jun-0)3 at 00	:53:482	Ζ.
Forecast time and soundings links	09Z>	12Z>	15Z>	[09Z>]	12Z>	15Z>	09Z>	12Z>	[15Z>]	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>
Forecast date and similar days links	Mon	day 03 2013>	June	Tues	day 04 2013>	June	Wedn	esday (2013>	05 June	Thurs	day 06 2013>	5 June	Frid	ay 07 : 2013>	June	Satu	rday 08 2013>	June	Sund	lay 09 2013>	June
Initialization date : 02.jun.2013 at 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+138h	+141h	+159h	+162h	+165h
ThQ (%) (Thermal Quality)	0	o 📕 o	0	34	56	54	91	74	37	94	95	57	94	84	11	94	87	76	o	0	o 🗖 o
Wind dir. & speed at 600 hPa (° Kml	19 55	22.10	04.17	88 17		176 7	136 8	162 10	164 8	151 4	162 6	175 6	148 5	221 8	266 12	223 9	214 16	223 20	196 14	229 14	59 10
Wind direction Icon at 600 hPa	the T	ſhQ,	<	Ŧ	5	ſ	5	7	7	1	أ	Ŷ	1	↗	\rightarrow	7	7	7	7	↗	K
Wind dir & speed at 650 hPa (° Kmh)	30 28	29 14	59 11	92 10	154 11	196 11	150 6	184 10	220 6	117 6	155 7	204 6	102 2	248 4	284 10	218 8	214 14	222 18	207 6	253 6	49 14
Wind direction Icon at 650 hPa	4	4	K	←	7	7	7	↑	7	~	7	7	~	\rightarrow	7	7	7	7	7	\rightarrow	Z
Wind dir. & speed at 700 hPa (° Kmh)	위 20	58.15	83.6	114.6	162-10	(.l'	100 /	193-10	259.8	106 7	163 7	262 7	51 4	288 2	292 8	201 7	214 14	231 16	263 3	13	60 15
Wind direction Icon at 700 hPa	<u></u>	the s	syno	OTIC W	/inds		ectior	ns ar	IQ >	~	<u>۲</u>	\rightarrow	2	\rightarrow	7	7	7	7	\rightarrow	\downarrow	K
Wind dir. & speed at 750 hPa (° Kmh)	sp	eeus) al i	umen	enti	evela	175.8		273 6	100	149 6	249 5	62 5	270 1	292 6	181 7	206 10	214 9	355 2	41 5	70 12
Wind direction Icon at 750 hPa				,		<i>,</i>	1			~		~	K	\rightarrow	Ņ	T	7	7	\downarrow	Ľ	K
Wind dir. & speed at 800 hPa (° Kmh)	58 27	51 22	56 21	132 6	27 8	33 11	175 5	346 6	339 5	105 4	18 2	335 4	0.2	349 5	343 6	176 5	276 5	310 4	105 3	77 7	91 8
Wind direction Icon at 800 hPa	と	Ľ	Ľ	~	7	7	↑	\mathcal{T}	γ	~	4	\mathcal{P}	\leftarrow	N.	7	\uparrow	\rightarrow	7	~	K	←
Wind dir. & speed at 850 hPa (° Kmh)	45 25	36 25	39 25	33 10	8 14	17 14	325 4	337 11	337 8	174	344 6	336 8	35	340 9	337 8	315 3	310 8	335 8	144 6	85 9	88 4
Wind direction Icon at 850 hPa	Ľ	Ľ	Ľ	7	\downarrow	7	7	7	7	4	γ	7	\downarrow	7	7	7	N	7	~	←	\leftarrow
Wind dir. & speed at 900 hPa (° Kmh)	35 21	26 22	30 22	8 12	NA	NA	330 7	NA	327 8	350 6	337 7	331 8	346 7	335 9	329 8	325 6	317 9	NA	NA	NA	NA
Wind direction Icon at 900 hPa	Ľ										\	7	\mathcal{P}	\mathcal{T}	7	И	N	NA	NA	NA	NA
Wind dir. & speed at 10m AGL (° Kmh)	30 17	20.2 t	he ar	moun	t of	cloud	Is of	diffe	rent t	ypes	335.7	330 7	343 6	333 9	327 7	325 6	318 8	336 8	127 4	69 7	51 2
Wind direction Icon at 10m AGL	1	*	-	v	¥	¥	v		-	v	×.	7	\mathcal{P}	7	И	И	N	7	~	K	4
Total cloud cover (%)	(50	(40	🕘 3°	0 16	10	0 1	0	O	43	0	О з	19	0 1	04	66	0	ۍ 🕐	0 24	• 99	95	9 78
Low level cloud cover (%)	0 1		9 30	0	\bigcirc	<mark>0 1</mark>	0	O	0 0	O 0	0 1	Ο ο	O 1	0 1	0	Ο ο	0	O 1	O 1	0 1	O 2
Middle level cloud cover (%)	🕐 8	17	0 1	0	0,	0 1	0	0 0	0 1	0	0	0	0	Ο (0 0	0	0	0 1	• 98	90	9 77
High level cloud cover (%)	19	39	0 2	16	10		0		43	0	Ū ,0	49	\bigcirc 1	0.4	K. 186	0	U 5	0 24	99	94	D 24
Convective cloud cover (%)	0	0	0 10	0	0,	0 2	Ο,	2	the	amo	bunt	of pre	ecipit	atio	n (tot	al an	d co	nvect	ive =	0	0
Boundary layer cloud cover (%)	0 1	0 1	Ο,	0	9	0	0	0	nund	ersto	orm)	and	an in	uex	or the	indel	stor	ntre	10.	1	0 1
3h accum. total precipitation (mm)	U	0	0	0 0	(o o	0	1	4	0	0	0	0	C	0 0	0	0	0	0	0	0 0
3h accum. convective precipitation (mm)	0	0	0	0	(0 0	0	1	— 4	0	0	0	0	C	0 0	0	0	0	0	0	0 0
K-index thunderstorm probability (%)	22	37	36	38	49	57	55	61	68	56	60	63	56	60	62	42	37	33	47	56	60

Get 0.3° forecast about 10-25 Km around N45.9-E21. Landmark ame: Gruybre-Rivera, V63 million (1992) 122: 152: 152: 152: 152: 152: 152: 152:																						
Forecast time and soundings links	09Z>	12Z>	15Z>	09Z>]	12Z>	15Z>	09Z>	12Z>	[15Z>]	09Z>	12Z>	15Z>	09Z>	12Z>	15Z>	09Z>	127	z>]	15Z>	09Z>	12Z>	15Z>
Constrained and similar days links Upper level														June								
Initialization date : 02.jun.2013 at 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+114h	+117h	+135h	+1	8h	+141h	+159h	+162h	+165h
ThQ (%) (Thermal Quality)	0	0	0	34	56	54	91	74	37	94	95	57	94	84	11	94		87	76	0	0	0
Wind dir. & speed at 600 hPa (° Kmh)	19 33	22 16	64 17	88 17	129 11	176 7	136 8	1 2 10	164 8	151 4	162 6	175 6	148 5	221 8	266 12	223 9	214	16	223 20	196 14	229 14	59 10
Wind direction Icon at 600 hPa	¥	4	K	←	~	↑	~	7	7	7	۲	Ŷ	7	ア	\rightarrow	7			7	7	↗	K
V On this line, there is a set	30-28	29-14	59 11	92 10 la a ra		196-11	150.6	The	220.6	117.6	155 7	204 6	102 2	248 4	284 10	218 8	214	14	222 18	207 6	253 6	49 14
• On this line, there is a sec	Juen	ce oi	num	ibers	witt	1a +	sign.	. me	у <i>7</i>	~ ~	7	7	~	\nearrow	Y	~			7	7	\rightarrow	Ľ
represent the elapsed tim	e be	twee	n ead	ch to	reca	st pe	riod	and t	the tr	me	163 7	262 7	51 4	288 2	292 8	201 7	214	14	231 16	263 3	13	60 15
of initialization. In general	grea	ater t	his e	lapse	ed tir	ne is	, less	s relia	able	~	۲	\rightarrow	4	\rightarrow	Y	7			7	\rightarrow	\downarrow	K
predictions are. But sometimes a previous cycle gives better predictions than the most recent cycle. 149 6 249 5 62 5 270 1 292 6 181 7 20 10 214 9 355 2 41 5 70 1 292 6 181 7 20 10 214 9 355 2 41 5 70 1 1 292 6 181 7 20 10 20															70 12							
predictions are. But sometimes a previous cycle gives better149 6 $249 5$ $62 5$ $270 1$ $292 6$ $181 7$ 200 10 $214 9$ $355 2$ $41 5$ 70 predictions than the most recent cycle. $18 2$ $335 4$ $83 3$ $349 5$ $343 6$ $176 5$ 27 5 $310 4$ $105 3$ $77 7$ 91															K							
predictions are. But sometimes a previous cycle gives better predictions than the most recent cycle. Indiffection Icon at 800 PPa															01.8							
predictions are. But sometimes a previous cycle. 149 6 249 5 62 5 270 1 292 6 181 7 20 10 214 9 355 2 41 5 70 1 predictions than the most recent cycle. 182 335 4 83 3 349 5 343 6 176 5 27 5 310 4 105 3 77 7 91 vind direction Icon at 800 hPa V<															\							
predictions than the most recent cycle. \uparrow \downarrow															88 4							
Wind direction Icon at 850 hPa	N	Ľ	Ľ	¥	1	¥	K	7	7	¥	\mathcal{Y}	7	\downarrow	7	7	Z			7	~	←	←
Wind dir. & speed at 900 hPa (° Kmh)	35 21	26 22	30 22	8 12	NA	NA	330 7	NA	327 8	350 6	337 7	331 8	346 7	335 9	329 8	325 6	31	9	NA	NA	NA	NA
Wind direction Icon at 900 hPa	Ľ	¥	4	\downarrow	No	w let	's cli	ck or	one	of th	ne 21	link	s Eo	r ex	ample	ar	eri	od	with	NA	NA	NA
Wind dir. & speed at 10m AGL (° Kmh)	30 17	20 18	25 18	3 11	int	oroot			botic	for			1071			r, u	20	111			97	51 2
Wind direction Icon at 10m AGL	¥	¥	¥	\downarrow	ψı	erest	ing i	ng i	natis		exan	npie		-1102	iy, Ju	ne /	, 20	113	5 .	5	K	Ľ
Total cloud cover (%)	O 50	4 0	31	16	O 10	O 1	0	0	43	0 0	O 3	0 49	O 1	0.	66	0	\bigcirc	5 (24	99	95	9 78
Low level cloud cover (%)	0 1	0 1	🕒 зо	0 0	O d	0 1	0	o O	0	0	0 1	O 0	0 1	0 1	o O	0	Ο	0) 1	0 1	0 2
Middle level cloud cover (%)	<u>е</u> 8	17	0 1	0	O d	0 1	0	0	0 1	0	0	0 0	0	\bigcirc	0 0	0	Ο	0		98	90	9 77
High level cloud cover (%)	49	39	O 2	16	(10	0 1	0	0	43	0	0	49	0 1	04	66	0	\bigcirc	5	24	99	94	D 24
Convective cloud cover (%)	0 0	0 0	0 10	0 0	Ο 0	0 2	0 1	0 61	67	0	16	11	0 0	0	0 2	0	0	0	0	0	0	0
Boundary layer cloud cover (%)	0 1	O 1	0	0	Ο (0	0	0	0	0	0	0	0	0	0 0	0	Ο	0) 1) 1	0 1	0 1
3h accum. total precipitation (mm)	0	0	0	0	C	0	0	1	4	0	0	0	0	(0	0		0	0	0	0	0
3h accum. convective precipitation (mm)	0	0	0	0	C	0	0	1	4	0	0	0	0	(0	0		0	0	о	0	C
K-index thunderstorm probability (%)	22	37	36	38	49	57	55	61	68	56	60	63	56	60	62	42	37	7	33	47	56	60

Retour page principale GFS> - Aide et mode d'emploi> - Help and usage> - Guida e uso> 0.5° forecast about 10-25 Km around N46.5-E7. Landmark name: Gruyère-Riviera. Mean macroscale ground level elevation: 1016 m. Html file generated 09Z> 12Z> 15Z> 09Z> 1 me and soundings links Wednesday 05 June Thursday 06 June Fridav 07 June Saturdav 08 June Tuesdav 04 June Sunda ate and similar days links 🕑 Soaringmeteo GFS sounding - Mozilla Firefox n date : 03.jun.2013 at 06Z Soaringmeteo GFS sounding Thermal Quality) 🕲 www.soaringmeteo.ch/GFS/canvasSoundingGFS-LocN46 5-E7 InitTime06Z102h.html speed at 600 hPa (° Kmh) tion Icon at 600 hPa 200 12008 -56.2 -61.5 GFS 0.5° aerological profile by Soaringmeteo Copyright 2012 - soaringmeteo ch - orthogonal graph hPa m °C °C speed at 650 hPa (° Kmh) On the far right you find the amount of cloud of different types. 127 tion Icon at 650 hPa speed at 700 hPa (° Kmh) SW rad (W/m2): 740 sible heat (W/m2): 150 On the left, you see a array of tion Icon at 700 hPa ent heat (W/m2): 294 300 9390 -43.8 -47.1 3h acc prec (mm): 0 numbers specifying numerical speed at 750 hPa (° Kmh) 3h conv prec (mm): 0 values of the aerological profile : LP (hPa): 1014.9 tion Icon at 750 hPa the air pressure values of the speed at 800 hPa (° Kmh) atmospheric layers in hectoPascal, their altitudes, their tion Icon at 800 hPa 400 7393 -28.1 -37.7 temperatures, their dew point speed at 850 hPa (° Kmh) temperatures and their winds. 0°C tion Icon at 850 hPa speed at 900 hPa (° Kmh) 5750 -15.7 -27.3 500 tion Icon at 900 hPa Dir km/h The gray rectangle represents the convective speed at 10m AGL (° Kmh) layer and its height shows the vertical extent of 600 4350 -6.2 -16.4 W 4 tion Icon at 10m AGL the convective layer.

Mean boundary layer top (m): 2505

Mean boundary layer depth (m): 1489

Mean ground surface elevation (m): 1016

-0.5

Mean pot cu base height (m): 2297

-0.8

-1 -7.3

650

700

750

800

850

900

cover (%)

cloud cover (%)

cloud cover (%)

el cloud cover (%)

cloud cover (%)

ayer cloud cover (%)

total precipitation (mm)

convective precipitation (mm)

3718

3125 2.2

2564 5.2

2033 9.2

1039

1016

1526 14.2 6

-1.8

-12.5 NNW 4

N 2

SSE 1

NNW 4

NNW 8

NNW 8

NNW 8

-8.5

-1.3

4.2

7.7

tetour page principale GFS> - Aide et mode d'emploi> - Help and usage> - Guida e uso> 0.5° forecast about 10-25 Km around N46.5-E7. Landmark name: Gruyère-Riviera. Mean macroscale ground level elevation: 1016 m. Html file generated 09Z> 12Z> 15Z> 09Z> 1 me and soundings links Vednesday 05 June Thursday 06 June Fridav 07 June Saturdav 08 June Tuesdav 04 June Sunda ate and similar days links 😓 Soaringmeteo GFS sounding - Mozilla Firefox n date : 03.jun.2013 at 06Z Soaringmeteo GFS sounding Thermal Quality) 🛞 www.**soaringmeteo.ch** GFS/canvasSoundingGFS-LocN46_5-E7_InitTime06Z102h.html speed at 600 hPa (° Kmh) tion Icon at 600 hPa 200 12008 -56.2 -61.5 ngmeteo Depending on the humidity of the air near the hPa m °C °C braph speed at 650 hPa (° Kmh) ground there is, or not, a small thumbnail of tion Icon at 650 hPa cumulus of different sizes at the top of the speed at 700 hPa (° Kmh) convective layer. Wetter the ground is, greater and lower the image of cumulus is. If there is no picture tion Icon at 700 hPa 9390 -43.8 -47.1 300 of cumulus, this means that the air near the soil is speed at 750 hPa (° Kmh) dry enough for development of blue thermals. tion Icon at 750 hPa speed at 800 hPa (° Kmh) tion Icon at 800 hPa 400 7393 -28.1 -37.7 speed at 850 hPa (° Kmh) -0.8 You can click on other periods to get other diagrams. tion Icon at 900 hPa -0.7 Dir km/h speed at 10m AGL (° Kmh) Now close the aerological 4350 -6.2 -16.4 W 4 600 tion Icon at 10m AGL profile window. 650 3718 -1.8 -12.5 NNW 4 cover (%) -0.7 700 3125 2.2 -8.5 N 2 cloud cover (%) -0.5 el cloud cover (%) 750 2564 5.2 SSE 1 -1.3 Mean boundary layer top (m): 2505 -0.8 Mean pot cu base height (m): 2297 cloud cover (%) 800 2033 9.2 4.2 NNW 4 Mean boundary layer depth (m): 1489 cloud cover (%) NNW 8 850 1526 14.2 6 ayer cloud cover (%) 1039 7.7 NNW 900 Mean ground surface elevation (m): 1016 NNW 8 total precipitation (mm)

convective precipitation (mm)

GFS 0.5° forecast about 10-25 Km a	ound N	46.5-E	7. Landı	mark na	ame: G	ruyère-	Riviera.	Mean r	nacrosc	ale grou	ind leve	el elevati	ion: 101	6 m. I	Html file	generate	ed on 20	013-Jun-	03 at 00	:53:482	<u>.</u>
Forecast time and soundings links	[09Z>]	12Z>	[15Z>]	[09Z>]	12Z>	[15Z>]	09Z>	12Z>	[15Z>]	[09Z>]	12Z>	[15Z>]	[09Z>]	12Z:	> <mark>[</mark> 15Z>]	09Z>	12Z>	[15Z>]	09Z>	12Z>	[15Z>]
Forecast date and similar days links	Mon	day 03 2013>	June	Tues	day 04 2013>	June	Wedn	esday (2013>	05 June	Thur	sday 00 2013>	5 June	Frid	ay 07 207 3	7 June >	Satu	rday 08 2013>	3 June	Sund	day 09 2013>	June
Initialization date : 02.jun.2013 at 18Z	+15h	+18h	+21h	+39h	+42h	+45h	+63h	+66h	+69h	+87h	+90h	+93h	+111h	+ -	<mark>h</mark> +117h	+135h	+138h	+141h	+159h	+162h	+165h
ThQ (%) (Thermal Quality)	0	– (о 📃 о	34	56	54	91	74	37	94	95	57	94		34 🗾 11	94	87	76	0	0	0
Wind dir. & speed at 600 hPa (° Kmh)	19 33	22 16	64 17	88 17	129 11	176 7	136 8	162 10	164 8	151 4	162 6	175 6	148 5	22	8 266 12	223 9	214 16	223 20	196 14	229 14	59 10
Wind direction Icon at 600 hPa	4	¥	K	←	7	↑	~	7	7	7	<u>م</u>	Ŷ	7	4	\rightarrow	7	7	7	7	↗	K
Wind dir & speed at 650 hPa (° Kmh)	30 28	29 14	59 11	92 10	154 11	196 11	150 6	184 10	220 6	117 6	155 7	204 6	102 2	24	4 284 10	218 8	214 14	222 18	207 6	253 6	49 14
Wind direction Icon at 650 hPa	4	4	K	←	7	7	7	1	7	~	7	7	~	1	Y	7	7	↗	7	\rightarrow	Ľ
Wind dir. & speed at 700 hPa (° Kmh)	44 26	58 13	83 6	114 6	162 10	194 10	166 7	193 10	259 8	106 7	163 7	262 7	51 4	28	2 292 8	201 7	214 14	231 16	263 3	13	60 15
Wind direction Icon at 700 hPa	Ľ	K	\leftarrow	~	7	7	7	7	ג	~	<u>م</u>	→	2		Y	7	7	↗	\rightarrow	\downarrow	K
Wind dir. & speed at 750 hPa (° Kmh)	56 31	03 15	101 10	130.6	15/ 0	201.4	172.0	179.6	273.6	106.7	140.6	240.5	62.5	27	1 202 6	191.7	206 10	214 9	355 2	41 5	70 12
Wind direction Icon at 750 hPa	Ľ	We	e find	our	grea	t tabl	le ba	ck. L	et's d	choos	se ar	nd cli	ck or	on	e of	N	7	7	\downarrow	2	K
Wind dir. & speed at 800 hPa (° Kmh)	58 27	the	date	es, fo	r exa	ample	e on	June	7,2	013.	We	will fi	nd ar	ו or	iginal	1055	276 5	310 4	105 3	77 7	91 8
Wind direction Icon at 800 hPa	K	fur	oction	. Thi	s is t	to co	mpar	e the	e cur	rent p	oredi	cted	weat	her	with		\rightarrow	7	~	K	←
Wind dir. & speed at 850 hPa (° Kmh)	45 25	the	wea	ther	of ol	d arc	hive	d dav	/s (da	avs o	f 200	07-20)11. c	urr	ently	3353	310 8	335 8	144 6	85 9	88 4
Wind direction Icon at 850 hPa	Ľ	ava	ailabl	e). If	simi	laritie	es ar	e fou	ind, a	anv e	vent	ual tr	aces	of	2	ч		7	5	\leftarrow	←
Wind dir. & speed at 900 hPa (° Kmh)	35 21	the	rmal	fligh	ts di	Irina	these	e arc	hive	d dav	s wil	ll be d	displa	ave	329.8	3356	317 9	NA	NA	NA	NA
Wind direction Icon at 900 hPa	Ľ				NA	inig		NA			5			1	7	J.		NA	NA	NA	NA
Wind dir. & speed at 10m AGL (° Kmh)	30 17	20 18	25 18	3 11	354 12	4 11	330 7	330 10	326 7	346 6	335 7	330 7	343 6	333	9 327 7	325 6	318 8	336 8	127 4	69 7	51 2
Wind direction Icon at 10m AGL	4	¥	4	\downarrow	\downarrow	\downarrow	γ	7	И	\mathcal{V}	\mathcal{V}	7	γ	7	N	\searrow		7	~	K	4
Total cloud cover (%)	① 50	40	31	16	10	0 1	. 🔾 🛛	0	43	0	О з	9 49	0 1	0	4 🕘 66	0	0 5	5 O 24	99	95	9 78
Low level cloud cover (%)	0 1	O 1	<u></u> зо	0	O (0 1	. O	O o	O o	o O	O 1	0	0 1	\odot	1 🔾 0	o O	O (\bigcirc 1	O 1	O 2
Middle level cloud cover (%)	<u>с</u> 8	17	O 1	Ο ο	O d	0 1	. O	O o	0 1	0	O d	o O	0	\bigcirc	o O o	o O	O	0 1	98	90	9 77
High level cloud cover (%)	49	39	0 2	16	10		0	0	43	0	O d	9 🕀	0 1	0	4 🖉 66	0	O 5	5 (24	99	94	24
Convective cloud cover (%)	0 0	0,	0 10	0	0	<mark>0 2</mark>	2 1	61	67	0 0	16	11	0	0	0 2	200	0	0	0	0	0
Boundary layer cloud cover (%)	0 1	0 1	0	0	0	o O	o O	0	O	o O	0	o O	0	0	0 O 0	0	0	0 1	0 1	0 1	0 1
3h accum. total precipitation (mm)	0	C	0 0	0	(o c	0 0	1	- 4	0	C	0 0	0		<mark>о</mark> с	0 0	c	0 0	0	0	0
3h accum. convective precipitation (mm)	0	C	0 0	0	(o c	0 0	1	- 4	0	C	0	0		o c	0 0	c	0 0	0	0	C
K-index thunderstorm probability (%)	22	37	36	38	49	57	55	61	68	56	60	63	56	60	62	42	37	33	47	56	60

Date and time period	Global coefficient of similarity and possibles links	T°C 2m	Td°C 2m	Spread°C 2m	BLDm sfc	RelH% 700hPa	RelH% 500hPa	RelH% 300hPa	o T°C a 500hPa	WDir° 850hPa	SpdKmh 850hFa	N WDir ^o 800hPa	SpdKmh 800hPa	WDir ^o 750hPa	S
Current GFS forecast period: Friday 07 June 2013 09Z		18.7	10.2	8.5	981	62	40	77	-16.3	3	4.9	83	3.2	62	
1st GDAS similar period: 2009-09-07 15Z	77% - No recorded thermal soaring flight	18.1	7.5	10.6	914	46	19	76	-12.9	24	5.2	58	9.1	49	
2nd GDAS similar period: 2007-06-08 12Z	67% - No recorded thermal soaring flight	17.3	13.9	3.4	857	81	31	43	-12.1	337	3.1	67	2.4	71	
3rd GDAS similar period: 2007-04-07 09Z	64% - 2 recorded thermal soaring flight(s)>	9.6	5.4	4.2	685	42	33	81	-20.7	35	5.7	52	5.9	47	
4th GDAS similar period: 2009-09-24 12Z	62% - 14 recorded thermal soaring flight()>	16.2	10.5	5.7	667	68	38	50	On the	e top li	ne, yo	u will f	ind the	list	
5th GDAS similar period: 2007-04-20 15Z	52% - 2 recorded the mai soaring flight(s)>	14.1	6.2	7.9	1219	51	26	46	of wea	ther p	arame	eters u	sed to	33	
-									T		ys bei	ween i	nem.		
Current GFS forecast period: Friday 07 June 2013 12Z		215	10.7	9.8	1363	60	50	93	and th	are th e dew	e air te point	emper tempe	ature i rature	Td	
1st GDAS similar period: 2007-04-07 12Z	79% 21 recorded thermal soaring .::-bt(s)>	10 5	On th	is page	, a ne	ew tab	le is	82	over th	ne gro	und, th	ne spre	ead, th	at 278	
2nd GDAS similar period: 2011-05-01 15Z	68% - 2 recorded then soaring flight(s)>	12	Each	part co	rresp	onds t	o the	83	is, the spread	differe d. driei	nce I the a	-1d (g ir is ar	reater nd vice	the SOS	
3rd GDAS similar period: 2007-04-24 12Z	63% - 6 recorded thermal soaring flight(s)>	17		d 9, 12, ted pres	15 Z	of the		89	versa)	, the tl	hickne	ss of t	he	290	
4th GDAS similar period: 2008-06-14 12Z	47% - No recorded thermal soaring flight	9	SCICC		1224		49	88	the rel	ctive b ative h	ounda numidi	ary laye ty in th	er BLD	m, /ers	
5th GDAS similar period: 2011-05-11 12Z	41% - No recorded there a soaring fight	17.4	10.1	7.3	966	81	92	93	of high	n atmo	spher	e, the	air	312	
-									tempe	rature	al 500	JnPa		3	
Current GFS forecast period: Friday 07 June 2013 15Z		19.5	12.2	7.3	1074	61	77	100	directi	on and nt altit	d stren udes	igth of Each	winds parame	at eter	
1st GDAS similar period: 2011-05-11 12Z	91% - No recorded thermal soaring flight	17.4	10.1	7.3	966	81	92	93	specifi	es the	colun	nn in v	hich th	nere	
2nd GDAS similar period: 2011-05-11 15Z	91% - No recorded thermal soaring flight	15.9	11.1	4.8	750	77	94	98	are va	lues fo t pred	or simi icted r	lar arc	hived	and	
3rd GDAS similar period: 2011-07-15 12Z	90% - 76 recorded thermal soaring flight(s)>	14.8	6.0	8.8	744	49	91	95	-15.5	344	10.9	320	9.4	313	I
4th GDAS similar period: 2011-05-17 15Z	84% - 12 recorded thermal soaring flight(s)>	13.6	8.0	5.6	930	85	96	100	-18.6	338	9.1	333	9.4	321	
5th GDAS similar period: 2008-05-03 12Z	83% - 28 recorded thermal soaring flight(s)>	14.0	6.2	7.8	1334	74	79	79	-17.8	342	7.0	330	9.8	315	

GFS 0.5° forecast about 10-25 Km around N46.5-E7. Landmark name: Gruyère-Riviera. Mean macroscale ground level elevation: 1016m. Html file generated on 2013-Jun-03 a similar archived periods of old days during the years 2007 to 2011 (comparisation between GFS current forecast and GDAS archived data). Links to possible thermal soaring fl

similar archived periods of old days during the years 2007 to 2011 (comparisation between GFS current forecast and GDAS archived data). Links to possible thermal soaring fl WDir^o SpdKmh WDir^o SpdKmh WDir^o S Global coefficient of similarity т∘с Td°C Spread°C BLDm RelH% RelH% RelH% т∘с Date and time period 700hPa 500hPa 300hPa 500hPa 850hPa 850hPa 800hPa 800hPa 750hPa 7 and possibles links 2m 2m 2m sfc Current GFS forecast period: 10.2 8.5 981 62 40 77 -16.33 4.9 83 3.2 18.762 Friday 07 June 2013 09Z 77% - No recorded thermal 1st GDAS similar period: 18.1 7.5 10.6 914 46 19 76 -12.924 5.2 58 9.1 49 2009-09-07 15Z soaring flight 2nd GDAS similar period: 67% - No recorded thermal 17.3 13.9 3.4 857 81 31 43 -12.1337 3.1 67 2.4 71 soaring flight 2007-06-08 12Z 64% - 2 recorded thermal 3rd GDAS similar period: 9.6 5.4 685 42 -20.7 47 4.2 33 81 35 5.7 52 5.9 2007-04-07 09Z soaring flight(s)> 62% - 14 recorded thermal 4th GDAS similar period: 58 16.2 Let us take the middle table, i.e. the one corresponding to 2009-09-24 12Z soaring flight(s)> 52% - 2 recorded thermal 5th GDAS similar period: the predicted period of 12Z of this Friday, June 7, 2013. 14.1 33 2007-04-20 15Z soaring flight(s)> Current GFS forecast period: 20.5 270 Friday 07 June 2013 12Z Just below is the line of the old archived period, here April 7 79% - 21 recorded thermal 1st GDAS similar period: 10.6 278 soaring fl tht(s)> 2007 12Z, which most closely resembles the forecast current 2007-04-07 12Z 68% - 2 reco ded thermal 2nd GDAS similar period: period, i.e. the 12Z of this Friday, June 7, 2013, from the 2.5 306 soaring fl ght(s)> 2011-05-01 15Z weather view point. For each period (9, 12, 15Z) of the current 63% - 6 reco ded thermal 3rd GDAS similar period: 17. 290 forecast day, you find the 10 most similar old periods. An overall 2007-04-24 12Z soaring fl ght(s)> 47% - No recorded thermal 4th GDAS similar period: coefficient of similarity in % can judge if the current forecast 9.6 294 2008-06-14 12Z soaring flight weather is much like the old days, or not. These five periods are 41% - No recorded thermal 5th GDAS similar period: 17.4 312 2011-05-11 12Z sorted in descending order of similarity. soaring flight Current GFS forecast period: 19.5 12.2 7.3 1074 61 77 100 -15.7337 8.2 343 5.5 292 Friday 07 June 2013 15Z 1st GDAS similar period: 91% - No recorded thermal -16.9334 11.7 325 10.6 312 2011-05-11 12Z If, during the old days, thermal flights were made, a link 2nd GDAS similar period: -16.3 359 7.6 341 5.9 299 2011-05-11 15Z appears with the number of thermals used. In our example, 3rd GDAS similar period: the 7 April 2007 12 Z, there were 21 thermal flights in the -15.5 344 10.9 326 9.4 313 2011-07-15 12Z region. Just click on this link to bring up a new window. 4th GDAS similar period: 18.6 338 9.1 333 9.4 321 2011-05-17 15Z 83% - 28 recorded thermal 5th GDAS similar period: 14.0 6.2 1334 79 79 -17.8330 7.8 74 342 7.0 9.8 315 soaring flight(s)> 2008-05-03 12Z

GFS 0.5° forecast about 10-25 Km around N46.5-E7. Landmark name: Gruyère-Riviera. Mean macroscale ground level elevation: 1016m. Html file generated on 2013-Jun-03 a

21 recorded thermal soaring flight(s) on 2007-04-07 12Z around N46_5-E7 - © 2013 soaringmeteo.ch, source: © thermal.kk7.ch

Yvonand

Mou

es

ens

alingés

nne

More detailed information describe the ascent: elevation gain, average vertical speed, ceiling, exact time of the beginning of the thermal.

> Thermal flight features: GFS grid point: N46 5-E7 Landmark name: Gruyère-Riviera Date and period: 2007-04-07 12Z Time: 13:34:24Z Lon: 6.9090292054° Lat: 46.480948082° Gain: 404m Climb mean rate: 1.1m/s Top: 1755m

Palézieux

Châtel-Saint-D

Blonay Vevey

Montreux

E62

Veytaux

Château-d'Œx

Haut-Intyamon

Lac de **L'Hongrin**

Vanil Noii

Freiburg

Marly

Le Mouret

Avry

St. Ursen

Saanen

Planfayon

Lenk

St? Stephan

Rüschegg

Boltigen

Zweisimmen

Besides the triangles, there is a small angle bracket icon at the center of the map. Let us click on it.

Bernex

Cornette

A new bubble appears. It contains information about grid point and about weather of the predicted period and the old similar one. Granges-Paccot St. A

Rijschega

Freiburg St. Ursen

Marly

n-les-Bains

hallens

GFS grid point: Coordinates: N46_5-E7. Landmark name: Gruyère-Riviera. Mean model ground elevation: 1016m. Current GFS forecast period: Friday 07 June 2013 12Z. Old similar archived day: 2007-04-07 12Z.

God?	2 +	+	-	0	-	-	0	-	0	0	0	+	0	+
Diff	4.2	423	13	16	12	4.4	2	2.9	15	0.6	8	-3.7	22	-5.0
Old	5.6	940	48	35	82	-20.5	343	5.9	334	4.6	278	4.4	267	7.4
Curr	9.8	1363	60	50	93	-16.1	340	8.8	349	5.2	270	0.7	288	2.4
	S2m	BLD	H700	H500	H300	T500	°850	V850	°800	V800	°750	V750	V700	°700

AVIV

GFS grid point: Coordinates: N46_5-E7.

Landmark name: Gruyère-Riviera. Mean model ground elevation: 1016m.

Current GFS forecast period: Friday 07 June 2013 12Z.

Old similar archived day: 2007-04-07 12Z.

Good?	+	+	-	0	-	•	0	-	0	0	0	+	0	+
Diff	4.2	423	13	16	12	4.4	2	2.9	15	0.6	8	-3.7	22	-5.0
Old	5.6	940	48	35	82	-20.5	343	5.9	334	4.6	278	4.4	267	7.4
Curr	9.8	1363	60	50	93	-16.1	340	8.8	349	5.2	270	0.7	288	2.4
	S2m	BLD	H700	H500	H300	T500	°850	V850	°800	V800	°750	V750	V700	°700

Lac de l'Honarin

Molésor

Palezieux

sanne

Epalingés

ains

hallens

Châtel-Saint-Denis

F23

Vevey Blonay

Montreux

Veytaux

Weather parameters taken into account are the spread at 2 m above the ground = S2m, i.e. the difference between the air temperature and dew point in $^{\circ}$ C. H = relative humidity in % at 3 altitudes, here 700, 500 and 300 hPa. T500 = air temperature at 500 hPa. $^{\circ}$ = wind direction and V = wind speed at four different altitudes, here 850, 800, 750 and 700 hPa.

X

Zweisimmen

Gsteig

In summary, there are two types of records extending between 1 January 2007 and 31 December 2011. The first is the weather archive that is to say, the daily analysis of GFS, and the second is the archive of GPS flight track from crosscountry competitions. It seems interesting to find thermal flights realized once during the old similar day to the current predicted day during which I plan my future flight. Thank you to the creator of thermal.kk7.ch to have generously provided me the archives of the flight tracks. Thank you to the U.S. Weather Bureau to provide us free valuable weather data.

You know the essentials about using soarGFS.